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ABSTRACT

The synthesis of microwave broadband equalizers, comprised solely of a
cascade of lossless equilength transmission lines operating between a resistive
generator and a resistive load, has been thoroughly established in the literature’
For this class of network, equiripple response specification is accomplished through
recourse to techniques employed in the analogous lowpass lumped-pa'rameter case,
The d,c, point, at which the lines become transparent, enables one to readily pre-

scribe the value of the load resistance,

This thesis considers the case in which the aforementioned Icalcade con-
figuration is augmented by the presence of lossless transmission line stubs, having
lengths commensurate with those of the lines. Tchebycheff-type response specification
is developed for specific types of this generic class, which, becausé of the stubas,

posseses finite w-frequency zeros of transmission,

One specific type of particular interest is the single shunt short-circuited
‘atub bandpass filter. This network is explicitly considered in the following section
of the thesis. A means for the a priori determination of load resistance and stub
characteristic impedance, with the stub at a given end of the cascade, is developed.
A technique is then evolved whereby one may, by altering the stub position,

systematically adjust the value of the terminating resistance.

The last segment of the thesis is devoted to the design of a reflection-type
tunnel diode amplifier, utilizing a transmission line equalizer, The diode parasitics
are approximated in the frequency band of interest by transmission line stubs. This
approximation circumvents the problem of transcendental functions inherent in
lumped reactance-transmission line mixtures and enables the adaptation of the
above -mentioned equiripple response functions by an extension of the Fano theory

of broadbanding.
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I. INTRODUCTION

The general network structure to be herein considered is that of a lossless
reciprocal two-port, comprised of a cascade of equilength transmission lines
augmented by transmission line stubs, operating between a resistive generator and
a resistive load. The initial pioblem to be treated is the prescription of an
equiripple response characteristic, which may be physically realized by particular

types of the above general structure,

The network approach which will be used is that of the scattering formalism,
the subject of papers by Cax'lin2 and Ydula? Consider the basic system, as shown

in Figure 1,

NG
_24__. LOSSLESS RECIPROCAL ‘_Oz_

b b 2
P R TWO — PORT —g—-’ 'RL

Figure | - System Representation

This system is described by the following scattering matrix representation:

= ' (1)
b, ’12(9) ‘zz‘P) a;

where a), a, are the incident "voltage" waves; b, b, are the reflected "voltage"

waves; p is the complex frequency variable, equal to ¢ + juw.

The choice of the scattering formalism is motivated by its particular
adaptability to the problem at hand, Consider the following properties, which are
delineated in reference 2:

a) The constraint of losslessness upon the two-port equalizer necessitates that:

[S'(-p)] [S(p)] = 12, a2 2 x 2 unit matrix, (the prime
denotes transpose) (2a)

Furthermore, because of reciprocity, 5,07 %2 (2b)
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b) If the port normalization numbers are chosen as equal to the respective
port terminations, R and Ry, Ile(j w)|2 = [slz(j m)|z becomes identical
to the power transfer ratio, referred to generator available power. Thus,
I’xz(j w)]z becomes a direct measure of the available gain of the netwérk
between the prescribed terminations,

c) If port 2 is normalized to its termination, RL' {upon which a, = 0),

b

= =1
117 %n 73] ' (3)

That is, the 511 coefficient of the lossless two-port becomes equal to the
input scattering coefficient of the one-port, comprised of the lossless

equalizer terminated in RL.

These properties, in essence, outline the synthesis procedure, The
specification of an equiripple power transfer characteristic is tantamount to the
12|2, subject to the above normalization constraints, Since, '
from the unitary condition (2a);

prescription of |s

2 2
|’11| =1'|312| ’ (4)

Is“ |2 is thereby also prescribed. The proper factorization will then yields,. = s, ,

11 in
from which the input immittance function can be readily ascertained,

Thus, the problem of equiripple response specification becomes that of
prescribing an analytic form for |sl?_|2 which will both produce the desired shape
and be physically realizable as the desired network. The type of network to be
herein considered is, as was previously stated, the cascade of transmission lines
augmented by stubs. Therefore, let us initiate the investigation of this problem by

considering a transmission line of length £ and characteristic impedance Zo.

Il Iz

Figure 2 - Transmission Line
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Its impedance matrix is:
1 1
coth <P csch SP |
(2] =2 (5)
o f f !
csch P coth TP

where
v = velocity of propagation
p= I+ jw

The corresponding scattering matrix of this two-port (normalized arbitrarily

to 1 ohm at each port) is readily determined by the relation:

-1
[S] = |z} -1, [|{2] + 1, (6)
where the minus one exponent denotes inverse,

The resultant matrix is:

1 2 1
(tanh Vp)(Zo -1 2 Zo sech sP

[S] ) ! ;Z 2 "
(tanh S pHZ + 1)+ 2 2 |, z, sech-‘l;p (tanh-f—,p)(Zg -1)

It is evident from these considerations that the dependence of the pertinent
parameters upon the frequency variable, p, is transcendental, At real frequencies

{0 = 0; p = jw) their behavior is periodic, with the first period being

(8)

)
w~f 2
<is

< w <

N E]

It is this transcendental dependence of the functions upon p which makes

further consideration of the pr'oblem in the p-domain unfeasible,

It has been shown by R.ichau‘ds4 that the complex frequency transformation:

A= tanh q =E +jQ (9a)
with
1 .
n=ps;=al t]jpl (9b)
removes this difficulty. That is, an input immittance function or reflection factor

of an arbitrary configuration of lossless transmission lines and resistors, which is

a transcendental function in the p-plane, becomes a rational function in the X\ -plane,



This p-to-\ plane mapping is not a unique, or one-to-one, mapping, On
the contrary, since its primary purpose is to transform the transcendental p-plane
functions into polynomial-type A functions, it must, among other fhings, transform

each jw-axis period into an infinite interval.
Thus, strips of the jw axis of length j« "IL' the first extending from

-j% 1‘-’- to +j % -}’-, each map onto-the entire jQ axis, The positive o -axis maps
onto the positive X -axis between 0 and 1; the negative o¢-axis maps onto the T -axis
between 0 and -1, The line p = j -12'- % maps onto the X -axis between o« and +1 for

¢ > 0 and between -« and -1 for ¢ < 0, The mapping of the upper portion of the
first right-half p-plane strip onto the \ -plane is shown in Figure 3,

P - PLANE A~ PLANE
iw i L(oun)
1 —
{ate)
A
A
5 - -yt -
(otw) o 8 T=i ¢ (otm) §
-1¥}

Figure 3 - Richards Frequency Transformation

A realizable reflection factor s(p) of the type encountered in transmission

line networks must be a "bounded-real" p-plane function, That is,
a) s(p*) = s*(p) (the asterik denotes complex conjugate)
b) s(p) is analyticin ¢ > 0 (10)
c) 0< |s(jw)| < 1.



Thus, an essential property of the Richards transformation is its mapping
of the right-half p-plane into the right half \ -plane and its mapping of the jw-axis
onto the j§l axis. This causes the above properties of s(p) to be carried over into
s(\). '

In terms of the new frequency variable \ , the scattering matrix of the

transmission line becomes:

X(Zi-l) 22 /1 -2

1 °".
[S] =2 - pan
MZg+1) 422

. 2
2z _V/1-\ MZS -1

The ultimate network of interest is the cascade of lines and stubs, A generic
form for the slz(x) of this network is desired since, as previously noted, the square
of its magnitude along the jQ axis can be equated to a power transfer ratio. This

general form may be implied if one considers the following:

__COMPOSITE_STRUCTURE__

— —1

' SUBSTRUCTURE SUBSTRUC TURE |
o—1__° £ t—o

L IS CEEES CONED D AR GENED D GRS G J

Figure 4 - Cascade Connection of Two Substructures

In Figure 4, D and E represent two networks connected in tandem. Let
[D] and [E] represent the respective scattering matrices of these networks, Then,
if [S] represents the scattering matrix of the composite network, it may be shown

that:
AR P

s,,1\) = 12
12 T-d,, e 00 (12)

The important aspect of equation 12 is the fact that alz(k) involves the
product of dlz(k) and elz(x) in the numerator and a rational denominator, If, then,
equation 12 is successively applied to a cascade of n equilength transmission lines,
having different characteristic impedances, the resultant form of llz().) ‘will,
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from equation 11, be:

n
Zz

, o
5,0\ = —p—(xyL—“ - ' (13)

n

where Pn(X) is a polynomial in \ of order n, possessing no zeros in the right half
plane, and where IPn(jﬂ)l > |(1 + ﬂz)n/zl. In evolving equation 13, we have
restricted consideration to the specific case of 1 ohm normalizations. This approach
was adopted for reasons of simplicity and is intended merely to provide heuristic
justification for the statement of the generic forms. Equation 13 and subsequent

equations 18-20 are general in nature,.

Having this general expression for the cascade, we must now determine the
manner in which the incorporation of stubs effects the resultant slz(x) scattering
coefficient. Consider, as an example, the shunt short-circuited stub, of characteristic
impedance Z . depicted in Figure 5. ‘

Figure 5 - Shunt Short-Circuited Stub

For this element,

- L _
Z,,=Z tanh = p=Z\ _ (14)

. Thus, the short-circuited stub, under the Richards transformation, becomes a \

inductor of inductance Zo. (Likewise, an open-circuited stub transforms into a \
capacitor of capacitance Yo = -zl— .) Regarding the above shunt, short-circuited stub
as a two-port, we may write its’normalized impedance matrix as:

1
(2] =z | (15)

where Zo is assumed normalized,



Its corresponding scattering matrix normalized to the number for the port at which

it is located is,if Zo is presumed so normalized:
1 o '
(8] = 7o xsT (16)

Thus, if equation 12 is now applied to the configuration of Figure 6, the

resulting slz(k) scattering coefficient will have the general form:
n

z
M1 - 2%

n+l

8,0\ = (17)

where Pn+ l()‘) is a.polynomial of order (n+ 1) itlx X\, having no zeros in the right half

\-plane, and where |Pn+ l(jﬂ)] > lieq + Qz)n/zl

. O | SR
CASCADE OF n EQUILENGTH
TRANSMISSION LINES )
w——) p——0

Figure 6 - Cascade of Transmission Lines Augmented by a Shunt
Short-Circuited Stub

Hence, slz(x) in equatioh 17 has a zero (called a zero of transmission) at
d.c, {(i.e., A = 0), the frequency at which the shunt, short-circuited stub behuves as
a true short circuit, A similar expression as equation 17 would have been obtained
had the cascade been augmented by a series open-circuited stub, rather than the
shunt shorted stub; such an element would also introduce a single order d.c, zero

of transmission,

By arranging shunt short-circuited stubs and series open-circuited stubs in
a highpass ladder configuration, one may achieve multiple-order d.c. zeros of
transmission. For a structure containing n cascaded transmission lines and possess-

ing an rth order d.c. zero of transmission:
n

z
AT (1 -\%)

n+r

51200 = (18)
In a similar fashion, one may incorporate series short-circuited stubs and
shunt open-circuited stubs to produce a multiple order zero of transmission at the

quarter-wave frequency. For an equalizer containing n cascaded transmission lines



and a qth order quarter-wave zero of transmission:
n
Zz
(-2
n+q

slz(k) = (19)

Finally, for the most general case of n cascaded lines, an rth order d.c, '

R th Lo
zero of transmission and a q quarter-wave zero of transmission:
n

3
AT (-2 ,
5,0 = (20).
12 pn+r+q :

These are the generic forms for whose magnitude sq.uared, along the jQl

axis, equiripple specification is desired,



1I. DEVELOPMENT OF THE EQUIRIPPLE FUNCTION

A, D.C, Zero of Transmission

The initial case to be considered is that of an equalizer containing n cascaded

transmission lines and an rﬂ'l

order d,c. zero of transmission, For convenience, .
however, the particular case of r = 1 will first be treated; the generalization to an
arbitrary positive integral r will then subsequently be made. Thus, from equation 18

with r = 1, the general form to be considered is:

n
2 Zz
5,00 = P2 (21)
n+l
Therefore:
2 2\n
s, () s, (-n) = 2 -A) (22)
12 12 P G
n+1l
where Pn+ l()‘2) now denotes a polynomial of order n+1 in XZ.
Along the jQ axis, then:
2 2.n
R 2 _Q Q .
s o] % = 222 ) 0< [s,Gm% <1 (23)
12 ) %) - 12 - .
n+l
From equation 9b:
Q=tanp ! (24a)
For convenience, let:
0=p31 (24b)
Then, substituting into equation 23:
2 _ tanz 0 seczne - sinze
o), 1% = > vty ) : (25)
n+ l(tan 0) Pn+ 1(cos 0)
Let, now:
Xx=qco8 0 (26a)
for which: ) " 2 i 2
sin"8=1 - cos 0=-°4—2x— (26b)
a

where o i8 an arbitrary positive constant greater than unity,
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Substituting equation 26 in 25:

2 2
a =X
2
|. l a -8 -X -
12 xZ 2
Prii®p) Gy
2 _ .2 | :
= a = y, (27)
2 2 2 H (x™) '
a -x +Hn+1(x) 1+ n+tl
a -Xx

The motivation for the preceding manipulations becomes more evident if one
considers again the basic end to be achieved. A Tchebycheff-type shape is desired
lZ|z, as this parameter can be equated to a power transfer ratio. That is, we
seek an analytic expression describing a shape having the basic form of Figure 7,

for |s

“Sul'

.0 -
|
|
|
i
l; ”
e:{ I g!"
Rs+Q lu‘l LE{e] xz-| xz-Q
dc. 1 WavE FREQ. } wave FREQ

Figure 7 - Desired Tchebycheff-type Shape

The problem thus becomes, noting equation 27, that of specifying
Hn+ 1(xz)ﬁaz - xz) in such a fashion that it oscillates between finite bounds over a
given interval and then increases monotonically outside of this interval., The single
order d.c. zero of transmission necessitates that this function have poles at

x=1a. These points correspond to d,c, and the half-wave frequency.
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If a function exhibiting this behavior can be found, then the multiplication
of it by a constant, call it :2 (where cz < < 1), when inserted into 27 will generate
the basic shape of Figure 7, That is, tz Hn+ l(xz)/czZ - xZ will slightly perturb
|a12|Z in the interval wherein the function oscillates between fixed bounds; in the
region where eZHn+ l(xz)/uz - xZ monotonically increases, eventually becoming

infinite at x = ¥ a, |slz|2 will monotonically decrease, becoming zero at x = ta.

The boundedneu constraint, 0< Ie when imposed upon equation

2
27 requires that H 1(x )/n - xz remain norlenegative in the entire real frequency
domain correlponding to -a < x < a which in turn demands that the function oscillate
between finite positive bounds., This latter constraint, however, is not stringent,
the form of equation 27 may be remanipulated in such a fashion as to accommodate

any finite bounds of oscillation and still satisfy the conditlon, 0< | In

IZI
the region of monotonic variation, however, 'H (x )/a - x“ must be a positive

increasing function,

A further restriction upon H (xz), which as yet has not been explicitly

n+l
stated, is the fact that it must be a rational function of xZ with real coefficients,
This demand becomes obvious if one recalls that in the generxc form of Ia Z(j Q)l2

P l(ﬂ ) was constrained to be a polynomial of order n + 1 in Q

Thus, if for simplicity of notation, we define F(x ) = n+ l(xz)/a.a.z -.xz, we
may summarize the requisite properties of F(xz) as:

a) F(xz) must possess poles at x = ta.

b) F(xz) must oscillate between finite bounds over a given portion of the total
mterval -a < x< +a.

c) F(x ) must be a positive, monotonically increasing function outside of the
interval of oscillation,

d) F(xz) must be a rational function of xz, whose numerator is a polynomial

of order n + 1 in xZ and whose denominator is the (az - xz) factor,

We are seeking, basically, a modified Tchebycheff function, The substitution,
x = a cos 8, with a stipulated as a positive constant > 1, was made in view of this
fact and with a foreknowledge of the behavior of ordinary Tchebycheff polynomiale
These polynomials, defined by:

“T_(x) = cos(n cos ™! x) (28)

oscillate in amplitude between Y1 for -1 < x < + 1 and behave monotonically outside
this interval. We must incorporate this type of behavior into the modified Tchebycheff
function., Thus the parameter a was prescribed to establish the width of the passband
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relative to the total band of interest. The total band, as shown in Figure 7, extends

from0=0to8=w, i.e,, from x = +a to x = -a, The edges of the. passband are

at eo =coslt % , l.e,, atx = . Hence, by increasing or decreasing a, subject

to the aforementioned constraint, one may respectively decrease or increase the
relative width of the passband,

Consider as a possible specification of F(xz), the function:

F(x%) = cos(2né + 6)
where .
é= cos™ ! x = cos”! {(a cos 8) ' (29)
-

a - X

From the trigonometric identities:
cos{(a+b)=cosacosb -sinasinbdb N (30)

sin a =~.\/{ - conI a

it becomes evident that F(xz) will have the general form:

2 /,, 2 2.2 2, 2 '
f(x - sin Zn¢-\/(“ -:) z-f (x) ‘ (31)
a - x

F(xz) =cos2né¢ .
a -X
Thus, the function will possess the (c;2 - xz) denominator factor, i.e.,
poles at x = pA Q.

The function we desire must be a function of the variable xz, noting
equation 27. The polynomials defined by equation 28 do not, for odd n, satisfy this
demand. However,

T, (x) = cos(2n cos ™! x) = cos(2n¢) = cosln [24]) = T (2x°-1) (32)

does satisfy this requirement of evenness. Thus, 2n ¢, rather than ¢, was incorporat-
ed into the argument of equation 29,

The development of this general Tchebycheff-type function, as well as the
proper analytic form for §, was accomplished by Sharpes and Helmanf’ The
spacification they formulated is: .
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202 2 3y

5= cos™} (- 2; )_xz to - (33a)
X -~a

or
2, 2. 2 2 2 2 ‘
col6=“-z“)x ta =!Q X -a (33b)
T 2 22
X =-a a - X

Consider Figure 8, wherein cos § (for a = 2,00) and COI‘Z¢ are both plotted
versus x in the interval -1 < x< 1, i.e., the passband. Since both functions are
bounded in magnitude by unity in this interval, the arguments § and 24 remain real,
Furthermore, the similar behavior of the functions implies that the angles 24 and §

must vary in like fashion across this interval. .

It is a well-established property of ~Tchebycheff polynomials, though, that
the argument $ traverses through v radians as x varies from +1 to -1. Thus, 2¢
will cover 2w radians; §, then, should likewise go through 2 radians. The manner
in which these two angles vary relative to each other, however, has not, as yet, '
been eltiblilhed. That is, although they both cover 2 radians in the passband,
no indication has been given as to whether their representative phasors would rotate
in a similar or opposite directions,

To establish this point, consider the definition:

2

sin ¢ = lin(col"l x) =4/1 - x (34)

By convintion. the positive sign is associated with the square root, This
fixes the interval 0 < x < 1 as corresponding to -“z >¢é >00rwm> 24> 0,
Likewise, the interval -1 < x < 0 corresponds n > 6> '2'- or2w > 26> w, Hence,

.g;t<o for -1< x < 1 (35)
since |
e
sin
If, then, we wish § to vary in a similar manner as 2 ¢, we must select ain §

in such a manner that the first and second quadrants of § correspondto 0 < x< 1
and the third and fourth to -1 < x < 0, To accomplish this, we take:
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2. 2
sin 6 =4/1 - cos® 5 = z“"%%"‘z)(“ - 1) (36)
a - X

where the square root of this last expression is taken as positive, Since u.z - xz > 0,
a> 1, and xz < 1 in the passband, sin § takes on the same sign as x; this, from the

above considerations, is the condition desired. Thus,

2 2
a6 -4 -1 :
ﬁ: o ’3% 1Dcofor 1< x<+1 ()

(" -x) sin b
Figure 9 depicts the variation of 6 arild 24 with x for a = 2, 00.

Hence, the argument (2né¢ + §) ranges over (n+1) cycles of 2r in the
passband, Cos (2n¢ + §), therefore, repeats (n+1) times with 2(n+ 1) zeros and

[Z(n+ 1)+ l] points of maximum deviation, i.e., points where |cos (2né + 6)| =1,

The effect of the angle § in the passband is merely to add another ripple.

It is important for our purposes that this angle add and not detract from the total
argument; the stopband attenuation of |'1z|2 proves much steeper in the former
instance, '

The important feature of this development is the fact that the basic
Tchebycheff property of oscillation between fixed bounds (i.e., t 1) over a subinterval
of the total band of interest is preserved. Thus, requirement (b) is established.

The passband behavior of a representative function is shown in Figure 10,

Up to this point, we have dealt solely with a single order d.c. zero of
transmission. This enabled is to consider the angle 5 as such, rather than multiplea
of this angle, Had an mth order d.c. zero of transmission been initially specified,
however, the counterpart to equation 27 would have been:

8,512 = H‘ - (38)

1+ n+m
(@® - x5™
For this form:
2

H (x")

p(xz)=(“+“‘ )m=co-(zn¢+x_ns) (39)
a -X

would be the requisite equiripple function,
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cos(ap+S)
(a =200) ﬂ
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R a =2.00:
one cos(a¢h+8)= 7 (56 +32,/3)x8 +(88-48/3)x*+(39+16 /3)x? -]

Fig 10 cos (4¢-+ 8) vs. x
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Consider the following expansion of (39):
cos(Zn¢ + mp) = 21. [ej(2n¢ + mé) + e-Ji2né + m5)]=

2 i-[(co- o+38in )2 (cos 6+ J8in 6)™ + (cos ¢ - #in$)2" (cos & - j sin 5)'“]= '

= etV 1) ([2a% - 1]a" -+ 2ax Y- D010 (K2 1P

+2ax

([2a®-1]x% -a? - 20xva® - 1) -1) )™

2(a - 5™ - ' (40)

In this form, the fact that (39) does possess the requisite (az - xz)m
denominator becomes explicit. _

Likewise, the passband behavior of cos(2 né + m §) would be qualitatively
similar to that of cos(Z2né + §). The argument (2n¢ + m §) would range over (n+m)
cycles of 2w, the function repeating (n+m) times with 2(n+m) zeros and [2(n+m)+ l]
points of maximum deviation,

The remaining properties which must be established are the positive,
monotonic stopband variation and the constraint of rationality. These properties will

be verified for the general case.
Consider again the function:

cos(Zné¢ + mh)

where
2¢ = cos™} (sz -1)

. 2 2 2
5 = cos"! { (ZGZ' l)x -a } = cos™} S(Xz) (41a)

a -~ X

Forl< |x| < a,
@xf - 1)> 1 (41b)

z(xz) > 1



IR DY e o s AR sy n v

R

19

Therefore, in this interval,
2¢=cos”l 2x% -1)=jcosh! (@2x%-1) (41c)

6 = <:_os-1 g(xz) = j cosh™} g(xz)

and
cos(2né + mb) = cos {j[n conh'1 (sz -=1)+ m conh"1 (g(xz)] } =

= cosh {n cosh™} (2 x° - 1) +m cosh™! (g(xz))} _ ‘ (414d)

As one proceeds from the passband edges (i.e., |x| = 1) to the edges of the
useful band (|x| = a), the parameters of (41b) increase monotonically, g(x”) approach-
ing infinity as |x| approaches a. Hence the function (41d) is also a positive,
monotonically increasing function in this interval; it varies from 1 to w as |x| varies
from 1 to a. Thus the desired behavior is achieved. Note that, from (41d), one
may readily deduce the primed nature of the polynomial numerator with respect to

: 2 2m '
the factor, (a -x) .

The necessary general rationality of cos(2n¢é + m §) may be explicitly shown

if one considers the following expansion:

cos(2né + mé) =cos 2Zndcosmb - sin 2n¢é sinm b (42a)

Again, for simplicity of notation, let:

2 2 2
cosg=f2e - lx ca . gu2 (42b)
a -X
Then, noting (42a)
cos(2ng + mb) = T, (x) T_(gtx?))- U, (x) U_(g(x’)) (42¢)
where |
T, (€) = cos(k cos”} )
(424)
U, (§) = sin(k cos”! )

Using, now, several established functional relaﬁonl?

v G = [1- @) @6 (42e)
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where
S - W T [('i‘) E T -k (Tre™ 80 - H? ]
and . ' |

(@) = woarar 20
Th‘-“'. noting (42b) and (36) in conjunction with (42e)

2 2 .
Vb)) = sins @, o) ZexdpOo2) o ety
(42g) .

- ,1 - x* U, ) =T, . (x)-xT, (x) (42h)

cos(zne + mb) = T, (x) T_(g(x))) - U, (x) U_(gix?)) =

T 2 Z2aXx 2-1 | y ' 2
= Tzn(x) m(l(x )+ ﬁ; (T2n+ l(!l) - "Tzn"‘” Qm . l(8(x ))

- x (421)

" However,

Thus .'

Since
X Tyns1® ’i’ Tons2®+ 7 Tontx

42
1 2 1 2 (i
sz‘r'”l(Zx -_l)+2-'rn(2x -l),

| z |
cos(Zng + ms) = T (2x%-1) T_ (gx’)) + zﬁ“@ [} T,, 2x%-1)
a -X

+eT (2x%-1) o T (222 - l)]Qm N Ca)) (42K)

From equation 42b, one notes that g(xz) is a rational function of xz. Since
equation 42k involves rational functions of xz and g(xz). it is itself a rational function
of xz. .
' Having established the previously-outlined requisite properties, we may
now incorporate this general Tchebycheff function into the equiripple specification
of |'12|z' From Figure 10, it is evident that the function oscillates between Y1 in
the passband. Therefore, the form of equation 38 must be slightly adjusted to
insure 0 < |'lz|2 < 1. A proper form, for n cascaded lines and an m*? order
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d.c. zero of transmission, is, then:

2
2 1 -
|'12' = ] < (43)
l1+¢" cos(2né + m§)

An alternate form may be obtained by defining:

5 A

p=3 (44n)
for which: 2 ,

cos p = ’l_t%"_'_é_ =x "‘1_'_12_ _ (44b)

a - .
and -
1 - xZ
sing=a (44c)
a -Xx

Employing this function, we may specify |llz‘2 as:

1
1+ ‘Z conz(ntb + mp)

2
lo,,1% = (45)

Note that since:

conz(n¢ +mp) = %4’ %coc(Zntb +2mp) = %-+%- cos{2né + m§), (46)

all prior discussions concerning the necessary properties of the equiripple function
are equally satisfied.

B. Quarter-Wave Frequency Zeros of Transmission

The general Tchebycheff function will now be applied to the case of quarter-
wave frequency (i.e., 1t = '2'-') zeros of transmission. For a network comprised of
n cascaded lines and possessing, in addition, a qth order quarter -wave zero of

transmission i, e., short circuited stubs in series, open circuited stubs in shunt,

(from eq. 19): n
( zf
1 -\
s.,\) = 47
12 0tq (47)
Therefore:
2
8,0 8,,(-N) = (-2
P, (\%)
n+q

with Pn+q(kz) a polynomial of order n+q in £,
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Thus, along the jQ axis:

2,n . ' -
l-,zum|2=£—*im1,-); 0< [, <1 (49)

n+q

" Noting that: Q=tan ! = tan 0,

n
|.12|2=—=£_ez_= (50].)
Pn+q(tan 9) .
1
Zn
= cos (50b)
2n+2q Zn+2q-2 2
sin 0 sin sin” 0
a —'Z—T—+I ——z——z——:z—* IXTIR X —— +a
ntq.5ecnt4dg Mq_'lcol nt q' ] lcos®e ©
- 1
2n+2q ' 2n+2q-2 '
sin (-] sin 2 2n-2 2n
e Za— Y a1 Tay— —t:-ta sin‘Bcos 0+a cos @
AL PP F ntq-1  429-¢9 1 °
{50¢c)

Note that equation (50c) involves only even powers of the trigonometric quantities.
Since -mze =] - colze. one may further manipulate equation (50c) into the form:

1

. (s1)
14 —lz'q— : chmnz 0)

with no loss of generality, G

n+q(linz 0) is a polynomial of order n+q in -mzo.

Thus, if the transforma tion:

x=q sin @ (52s)
is made, for which,
2 2 2 - xz
cos Osl-lin~9=“—-z——, {52b)
a ’ .

cqutlbn 51 will assume the form:

1
2,
H 1 q*)
@® - x99

|8y, 12 - (53)

1+
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This form is identical to that of équation (38). Therefore, if |s ,|% 18
specified as:

2

2 _ 1 -¢ :

s, =- 5 , (54)
) 1+¢ cos(2né¢ + q b)

where x = g sin 6, an equiripple shape is attained. Note that this is a low pass
characteristic; the d,c, point corresponds to x = o, the passband edge tox = + 1,
and the quarter-wave frequency to x = +a. Figure 11 shows a generic shape of this

type.

Isil? A

.00 =

130 xs 4l s4Q

jo=0 Qron'y o-F

Fi.ﬁre 11 - Equiripple Shape for the Case of a Quarter -Wave Zero i
of Transmission

C. Zeros of Transmission at D.C, and the Quarter -Wave Frequency

The network structure to be herein considered is one which possesses zeros
of transmission at both d.c. and the quarter -wave frequency (i.e,, at 2= 0 and
Q = v, respectively). No equiripple specification technique has been devised to
handle the most general case of this class; however, we may accommodate the case
wherein the pertinent network is comprised of an even number of cascaded lines and
equal order zeros of transmission at d.c. and the quarter-wave frequency. Imposing
these restrictions upon equation (20), we have, for n = 2m cascaded lines and an r
order zero atd.c, gnd the quarter -wave:

r Z.m

AT (1 -
s,,(\) =p—1—-&,- 55
12 2m+ 2r (39)
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Al'on( the jQ axis, then:

o .
||lzj0)|z ‘;_11_*‘9_).2_, 0< s umP< 1 (56)

2r 2:2
2m+2rm )
Since 1 = tan g £ = tan 6:
' 2r 4m
|'1z|2 . tan_~ O sec . 0 (57a)
Pom ¢+ 2r(tan" 6)
.ian 0
~——Imilr
- cos + To
sin 4m+41'e oa sin 4m+4r - 2e . ea .inze +.
2m+2r ﬁﬂr 2m+2r- 1_4mr_-2_ 1;2—' _
(57b)
= 1 .
4m+2re . sin 4m+2r- Ze R co.amnx-ze o co.kn-rZre
—2—'— TZ"_" ' -
S2m+2r 2m+2r-1 r ‘ian Ze o .inzre
(57¢)

Noting that equation (57c) involves only even powers of the trigonometric functions, )

we may rewrite it as:

1

ls,, 1% = (58)
2 sz + Zr('inz 8)

1+
{cos 0 sin e)

with no loss of generality; sz+ Zr(-in 8) is a polynomial of order 2m + 2r in
2

.,lin 0.

Let us now make the transformation:
x=qgcos26 (59a)
for which,
’ X _ _ 2 .2
;-conze-Zcol 0-1=1-2sin"0, _ (59b)
Thus,

conze=71r (a + x)

(60)
-mze = -z-l;-(a - x)
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Equation (60), when introduced into (58), will yield a form:

2 1 -
lo,,1" = (61)
nl 1+ Hom +2r'™® : :

@’ - x5*

However, we require symmetric behavior about x = o; |llz |.-2 must be > 0 for

1< |x| £ a. Hence, let us restrict HZm + Zl_(x) to be an even fun;tloh of x; that is,

we set the coefficients of all odd powers equal to zero. Then,

)
Hpe )

@ - x5

This form is identical to that of equations (38) and (53). Thun. by specifying .

|.n|2. 1 | . (62)

. 1+

2 . 1 _'2
I'l.zl = y. ’ (63)
. ‘ 1+c¢” cos(2mé + rb) :

we realizse the desired equiripple shape.

Figure 12 depicts a generic shape of this class,

I8a’
|
|
|
[
I
%30 xs=| 1=Q
I |-
@0  G+fcos’'} 6:F O-fcosy 6. F

Figure 12 - Equiripple Shape for the Case of D.C. and Quarter-Wave
Frequency Zeros of Transmission _

Examples, wherein networks realizing these Tchebycheff shapes ar.e

’lyntheliud. will be given in subsequent sections of the text. The shunt, short-

circuited stub band pass filter, treated in the following segment, will utilize the
transformation of Section Il A; that of Section IIB will be employed in the tunnel
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diode amplifier design, Appendix A contains an elementary example of a synthesis,
, realizing a network of the Section IIC type.
3 -
& ' " An integral part of these synthesis procedures is the factorization of

. ll()\) sll(-X) =1 - 512()\) slz(—x), as outlined in reference 1, Thus, it would be
highly desirable to have an explicit factorization of sll(k) s“(-x). This factorization,
for the general case, has not been achieved. However, for the specific case of

Section II A or Section IIB wherein the number of lines and the order of the zero of

transmission are equal (i.e., where cos(2n¢ + n6) is encountered), the roots may

be found in a manner similar to that employed with regular Tchebycheff polynomials,
- This factorization is outlined in Appendix B.

b
b
.
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III, THE SINGLE-STUB BANDPASS FILTER

A. Determination of Load Resistance and Stub Charactcr.iltic 'A_dmlttlnce

The network to be considered in this section is, as shown in Figure 13, a
cascade of transmission lines shunted by a short-circuited stub, The problem to be
treated is the agriori determination of the load resistance and stub characteristic
admittance, so that the structure can be designed to operate between prescribed

terminations.

TN

Pl an & =

Figure 13 - Shunt, Short-Circuited Stub, Bandpass Filter

For a network comprised solely of a cascade of cqullcnjth transmission
lines operating between a resistive generator and a resistive load, the determination
of the load resistance is straightforward. The transparency of the lines at d.c.

{Q = 0) enables one to calculate the load termination RL from the relntlon‘.

R, -R -

= L :
UL ms e . (64)
That is, since s, (0) is real and since Il“ |2 =1- |'1z|z- the load resistance may
be easily determined from a knowledge of the insertion gain (i.e,, |'1z'2) shape.

The insertion of the shunt, shorted stub into the equalizer, as is shown in
Figure 13, necessitates that l“(O) = -] regardless of the termination. One loses
the d.c. point access to the load.

The problem thus becomes, given the insertion gain shape (i.-e. » equation
(43) or (45)) and a foreknowledge of the desired physical position of the stub relative
to the generator and load, the determination in an a priori fashion of the values of
load resistance and stub characteristic admittance which the synthesis will yield.

We shall obtain these parameters by considering the representation of
Figure 14,
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i |

= [

J

Yin (X)
Figure 14 - Bandpass Filter Schematic

where ?(X) represents the unnormalized input admittance of a cascade of n equi-
length lossless transmission lines terminated in conductance Y, .

Y’ = stub characteristic admittance,

Yin(X) = unnormalized input admittance of the stub-shunted cascade. That is,

Y -
Y, () = T’- + YO\ | ' (65)

Normalizing this admittance to Yg’ = Rg.l:

Yin R Ys R
~ = —E—)\ + RS Y(\), (66)
for which:
1-R Y.m
8 M) = ——E2 - o () (67)
1+ Rg Yin

if we constrain port 2 of the equalizer to be normalized to the load,

-The first relation that will be derived is the familiar Fano-Bode integral
8,11

restriction, Substituting equation (65) into (67):
1-RY - A 3
£ .r Yy |rry U - RgYO)
5,0 = B o B (68)
1+4R Y -

X -~
1+ (1+R_Y(\)
+ RSY(X) Rg!s g

Note from the above definition that ?(x) is a regular function in the neighborhood of
the origin; that is, its series expansion about this point would be of the form:

YO =Y, + an+anfy.. (69)
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Hence, in the neighborhood of the origin s l(k) is a ratio of two quantities differing
slightly from unity. Let us expand —-—(ﬂ— about the origin

1 A $ \ s
—-m=- 1+K—Y—1+R Y(\)) 1+K'Y_“'R YON)) + .o (70)
11 g s( g g s g

since-l— 1+t+t2+"' .

Thus: 2 ®
—(Ws“l = (-4 gyt Y b AT (1)
g 8 n=2
and o
1 . 2 n
In( y=jm o+ 4+ c \". (72)
or
[0 0]
1 1 ' 2 1,1
-21“(;'1-1'0:;')‘";'5'*1{'?' Ttz L M . (1)
g *® A n=2

Consider the integration of equation (73) about the contour shown in Figure 15,

Y]
+R

o

+r \co

Figure 15 - Path of Contour Integration
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1 1
Let us now constrain In ( ) to be analytic within and on the closed

: AT .
contour of Figure 15, Then, by the Cauchy -Goursat theorem:

1 1
In ( ydx =0 (74)
$ 5z e
The integrand vanishes on oo’ i,e.,
lim |p —lzln(s—lm-)dx =0
R c_\ 11
- 0| ©
Furthermore:
f 11-1n (s—'l'(ﬂ—)d)\=+jﬂ (KEY—) (75)
<, 8 11 , g s

since the integration about the pole at the origin is taken in the "positive -phase",

i.e,, counterclockwise, direction. Thus,

o+r

1 1 27T 1 R 1
In { Ydx=j - —ln ( YA+ - In( )dQ +
AR~ S v Ly

+j‘ﬂ’(§-§r)=° (76a)
g s

or, in the limit as r—e 0,

°= 1 ® 1 2w
. l(—-(rm-)dﬂ+ 1 (—G-m—)dﬂ=n— 76b
f-mf?n 1Y fo+97n *11 g s (7eb)
. Let-'—-l(j-m— be represented as:
. 11
1 = 1 j $(Q)
5,00 |5 0m | ° an
Then:'
fo-lln ] dn+f°° L 1 dﬂ-n-z". 78
coat |20 ot at 0% i g s (8)

since the integral of the phase component is zero; every point on the jQ axis has its
corresponding ¢onjugate and from (10), 'll()‘*) = ':10‘)'
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2
2
g 8

Thus, .

11
;7 g

o

8,05

This gives us one of the required relations. To obtain the second, let us
consider again Figure 14, From equation (67):
1-RY, (j9) 1-RY, (-jS)
2 . 2 in in
ls, G = 1- 18,69 1° = by - (80a)
11 12 FR YT TR Y

or: 1+ |ngm(jn)[2 - 2 Re 3 (Jn)i

. 2 8 in
l - l‘lz(JQ)l =

(80b)
1+ IRgYin(jQ)IZ + 2 Re 3RgYin(jQ)§

Rearranging equation (80b):

4Re}R8Y (j );

IRgYmU )|? = lslzuml (142 Reg . m(jﬂ)% ) (80c)
From equation (66);
R Y . :
R Y, U9 = -ﬁ,-h R YD) (81)
Hence:
Reg . m‘j“)f Re 3Rg‘}(jﬂ)i - (82)
since Rg and Ys are real quantities (stub is lossless),
Also:
N S Y, . .
IR Y 6@% = R 7'-+—j-;—- Ve - =2 Tga ITgmi® ) (83)

Thus, noting equation (69) in conjunction with (82) and (83):
a’ 4Re ;Rg;l(jn)$
Y

2
= (84a)
: I'lz(jmlz =0

/M N

[ IRgYmuml ]ﬂ=o= R
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since:
a%(1 + 2 Re ;R Y, (59) } ) =|a®(1+2Re JR Yl )| =0 (84b)
g in Q=0 g Q=0
" Let us transform equation (84a) to the x-domain, From Section II-A, x = a'cos 0,

Thus:
3 2 2 _ 2

Q% = tan 6= X
X

We shall adopt, as our equiripple form, that of equation (45).- Lef:

I IZ 1 KZ 1 KZ
[] = - = — (86)
12 1+ :z cosz(ncb + B) cZG (xz)
1+ n+1l
- 2z
a -x
where 0 < xz << 1,
From equation (69):
[Re (R_Y(j) } =R Y (87)
Q=0
Thus, from equation (84a):
a% 4Re (R_Y(jQ)) 2 2
2,2 & ! ¢ Gn+ l(u' )
RgYs = . 2 =4 RgYL -2, 2. (88)
|8, a“1-49 |

Q=0

Therefore, using equation (79) in conjunction with (88):

- 2w
Y.—
(o 0]
R | [ 71.1n—lz_dn
Elo o s, im)]
and ' 2 (89)
R ezG (nz) @ .
R, = ntl [ —==n - dn.
" a (1 -x) o Q s..(iN)
11
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These relations pertain to the case wherein the stub shunts the generator.
Instances may arise in which the desired orientation has the stub shunting the load,
as is shown in Figure 16b. For this case, in view of reciprocity, we may first
treat the case of Figure l6a. Proceeding in an analogous fashion from port 2,

we may predetermine the pertinent parameters by the relations:

Y = 2
’ j‘m L 1 aQ
R n
L [o 2 ey, G007
and { 90)
2 2 2
R N z z
n a” (1 - k") o Q lszz(j0)|

Because of reciprocity, |312.(jm |2 = Isu(jﬂ) |2. Thus, if we now move
the ideal generator Eg to port 1 to form the configuration of Figure 16b, the power
transfer ratio will not change; the network of 16a, with the power measured across
Rg' has a transducer power gain identical to that of 16b, wherein power is measured

across R, .

L
-, —)On = e - -
Ry
) 7
Rq $ (n Ys (2)
€
-— T o — R . ¢ - 9
(o)
W O e wv - aauall P
Re L==-— |
() Ys (2) 3R
Eg 1—=—4
©- N PO wn - — - L —

Figure 16 - Bandpass Filter with Stub Shunting Load

A necessary condition for the validity of equation (74) was the analyticity
of the Fano integrand within the closed contour of Figure 15, This constraint, which
permitted the derivation of equation (79), thus restricts the validity of equations(89)
and (90). These relations will predict the desired parameters for the case of
Figure 13 or Figure 16 only if, in the ensuing synthesis factorization, -“(x) or
s?_z(x), respectively, is chosen such that it possesses no zeros in the right half plane.



34

The constant KZ was introduced in equation (86) to serve a dual purpose,
For a given q, cz and n, it may be used to vary the stub and load immittances,. - \
Sec'onf.lly, in lowering the passband ripple peaks of |812|2 to below unit);, the para-
meter KZ prevents jQ-axis zeros of s“(k) or sZZ(X) and thus serves to prevent jQ-
- axis singularities of the Fano integrand; equation (74) demands that the integrand

be analytic on the contour.

The lack of an explicit analytic evaluation of the Fano integral for the gain
functions used here restricts this determination of parameters to a semi-graphical
procedure. Its primary advantage lies in the fact that design curves may be tabulated

_ for cases of interest,

To demonstrate how these design curves (e.g., Ys v.8, KZ and RL V.8, KZ)
would be computed, a relatively simple example will now be offered, Let the pertinent

design parameters be specified as:

a) n=1
b)Y a =1,50
c) :2 = 0,01
d) the shorted stub is to shunt the generator
As a reasonable designation for KZ, let KZ = (.04, Then:
ls IZ___ 1 -0,04 - 0,96 (91)
20 14o.01cos“erp 1400 (L1cos O3 F))
which, for nz = 2.25, becomes:
2 0.96
'lslzl = 5 7.y ) (92)
L+ 0.005 [1 ,13.7082x" - 14.7082x° + 2.25
-z
2.25 - x

.From equation (86):

2
¢%.G_, a%)=0.01G,(z.25)=0.005 [z. 25 -x%413.7082x* - 14,7082 x% +
+ 2.25] 2 = 0,19277 (93)
x =2,25
To evaluate the Fano integral, we initially formulate 1 = 1 The

z -
EIPL I LIPY
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integration is then separated into two phases. Noting that,

2 2 2
02 - anlp =X 220X (942)

X X

Q = _2_Z§z_:x_ =1.118 ¥ (94b)

x=1

Figure 17 depicts the stopband variation of the Fano integrand. By numerical

integration, the integral was evaluated to be:

1.118

1 1 _
j — n ———— 49 = 6,82 (95)
o @ 5,09
The integration was divided into two parts because, in the passband,
l/|l“|z ripples about a mean value, callit 1/] solz. Since the logarithm of a

function varies less than the function itself:

@ @
1 1 -~ 1 1 _ r® 1,005
1.118 @ -“(m)l 1 118 @ s Q
. o 1.118
(96)
Thus, from equation (89) (for R8 = ] ohm) :
Y, = %%5 = 0.654 mho
(97)

2
R, = (0.19277)(9.60) " _ o gus 0

The actual synthesis, performed to verify these results, yielded the
following:
From equations (92) and (94a):

_0.112500* - 0,041717308% + 0.1927716

s, i |% = T > (98)
2.2725092° + 2.1182827Q7+0.1927716
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Fig. 17 Stopband Variation of Fano Integrand

MRI-18858



37

Selécting left-hand plane zeros and noting that l“(O) = -]:

2 :
‘11()‘) = -0.2222498 \“ - 0,333571\ - 0,.291252 ’ (99)
. A"+ 1,230708\'+ 0,291252

for which the corresponding iﬁput admittance is:

2
1.222498)\° + 1,564279) + 0.582504 N (100)

Y, (\) =
in 0.777502\° + 0.897137\

The resulting network is shown in Figure 18:

ﬂ_.

1 OHM ' L
Mo é Yy £ 0.649 MHO Yo =383 MHO i: R_:0.648 OHM
'—M hd )

Figure 18 - Synthesized One-line Bandpass Filter
Note that in cases where a single design for a specific RL is required, one

must use a cut and try procedure in adjusting the shape parameters, until the

integration yields the desired value,

A word of explanation is in order concerning the forms of equations (89) and
(90) . The Fano integral is specified in the l-domain whereas the other parafneterl
are evaluated in the x-domain. In lieu of the fact that Islzlz is initially specified
as a function of x, one might question the merit of an x-to-Q transformation for the

integrand,

The motivation for this transformation lies in the fact that the integrand
is composed of the product of two terms which respectively increase and decrease
as one proceeds to the edge of the useful band, Thus, a stopband maximum occurs,
1f, as in the example, the stopband attenuation of |slz|Z is not relatively steep,
this peak will occur in the immediate vicinity of the band edge (i.e., 2= 0), In
this region:

| n (101)
1+n)

is correspondingly small. Hence, the stopband peak in the x-domain becomes
accordingly greater and numerical integration is, thus, more difficult,
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For equalizers comprised of greater numbers of lines, the stopband
attenuation of |312|2 becomes greater and the stopband peak shifts inward from

the band edge. In these cases, choice of domain is relatively academic.

B. Partial Residue Technique for the Adjustment of the Load Immittance

In the preceding section, the use of the Fano integral necessitated a definite
physical positioning of the shunt short-circuited stub relative to the generator or
load; the stub had to be positioned distinct from the cascade if any useful information

was to be extracted. This orientation, however, is not the most general,

The shunt s.c. stub introduces a d.c. zero of transmission, Since this
zero occurs at the frequency at which the lines become transparent, it becomes
evident that equation (17) is the form for any positioning of the shunt s.c. stub.

The d.c. input immittance will be that of a.short circuit, irreaéective of the stub
location. Moreover, since the parallel combination of an arbitrary number of these
stubs (\ inductors) will still produce a single order d.c. zero of transmission
(i.e., act as a single equivalent shunt inductance), equation (17) does not constrain

the resulting equalizer to be of canonic form (i.e., minimum number of elements),

In the synthesis of these networks, this lack of uniqueness carries over to
the input immittance expression, Thus, for a given input immittance function, the
sequence of synthesis is not fixed, One may, for such a function, extract a total
residue, a partial residue or a transmission line (i.e., delay the residue extraction
to a later stage in the cascade synthesis). In each instance, the load termination
which is ultimately realized will be different.

'I“his fact affords one an added degree of freedom in load realization, If
this change in load immittance can be predicted, the delayal of stub extraction will
provide a stage -by-stage procedure whereby the load may be adjusted, That is, if
this variation is monotonic, one may in certain cases converge upon the desired
value of load immittance.

Consider Figure 19, wherein the alternatives at one's disposal are shown.,
In this development, capital letters will be used to designate unnormalized admit-
tances; lower case letters will indicate normalized ones.
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A
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Figure 19 - Alternative Synthesis Procedures
In Figure 19:

Y(\) = input admittance physically realizable as a cascade of n-1 lossless equi-
length transmission lines shunted by a lossless s.c. stub of commensurate length
and terminated by a pure conductance.

K, K,, K; = stub characteristic admittances,

Y, Y‘; = line characteristic admittances,

Y. ), ¥, Y0, ¥'(0), ¥*(\) = input admittances whose relations to Y(A) and the
other parameters is indicated in the diagrams,
Yy YI: = terminating conductances

The object of the following derivation will be to obtain an expression for
Yl:. in terms of Y, and other quantities which can be readily determined at the Y(\)

. input stage.

To begin this development, we shall use the transmission line relation:

Yr(k) YO\ + 2 Yo

RALEE ol =
r ° Y, +AY(N)

(102a)

or rearranging,

vm=-,U- o - s
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For n-1 lines and the shunt s, c, itu_b:

n n
E a \" ‘ckkk..l
_ k%o " _K K1 - K
Y(X)- n -T+ n l - x +Yr(X)
T p WP b AP~
(=
p=1 P ps1 P
where a
1
Let us now designate
K= K1 + Kr where 0< Kr < K (104)
Then:
. 1 n
k-1 k
REA K, & K
Y()\) = + + = + =—+ Y'(\) .(105a)
b 1N n N n \ b 4
Y b APl Y b AP
= P P
p=1 p=l
where:
n n n
-1 k k
KbaP-l, e n= ¥ d k. (105b
pZ:x rp kZ'l kT, K )
From equation (105a):
§ 4
L Tk
t_ 4! - k=0 — D
Yo = Yr“) == -y (106a)
L |
p=1 P
" where:
i n
D= and B = b 106b
& % &, (106b)

That is, 'from equation (104) and the definition of Y(\), Y::()‘) is similarly
realizable as a cascade of n-1 lines, shunted by a s.c, stub and terminated by a

conducta‘nce. Thus, from (102b):
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xg--zd“x: o ) )
§'(X)=:"'N= z;gx =pxszxk-nzdkx _
Y! NI d D B\ T dA -D:bpxp
szxP

n+l n 2
Dbn)‘ +(Db -Bdn))\ +oeenee +(Db1-BdZ)X +(-Bd1)k+(-Bd°)

n-1
= n+l n 2
B dnx +(Bdn_1 -Dbn) At t (Bdl -Dbz)x + (Bdo -Dbl) by
(107)
A necessary consequence of the realizability of Y;_(k) is the fact that:
] ' - .
Yr(l) + Yr(-l) =0 ' (1.08)

Noting equation (102b), this, in turn, demands that both numerator and denominator
of equation (107) be reducible by the factor (1 - XZ). Let the reduced form of §'(x)

be represented as:

2
e \ + oeeeiine + ezx + elx + eo

1\ = (109)

n-1 2
f 1N P +fo +f1x

_ Let now both numerator and denominator of equation (109) be multiplied by
the factor ( 1-x2) and the resulting coefficients be associated with those of (107),
The ensuing pertinent relations are:

e°=-Bdo ilzBdo'Dbl
e1=-Bdl t‘2=Bd1-Dbz
Db (110)
ez - eo - ( I - B dz)
or
e2=Dbl -BdZ-Bdo
Thus:
’ n-l1 2 ' n-2
;' o) = en-l)‘ 1 + ceese 4 ez\ + elx + e, ) _l;r_ . gn_zx + eeeee 4 glx+go
n=d s < ) n-2
fn-lx + + fz)s + flk fn-l\ 4 oeevee 4 fZ)' + fl

k'
=%+ F'0) (111)
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From (110) and (111):

Also;
—e.-f.k'= -Bd, -(Bd, -Db,){ P )
Bo " €172 7 1 1 2 B'a'—D'B'o-- )
and
. Y' =;'"(0) - go___ BD(bldl -dobz)
L T " (Ba_-Db)°
o 1
" Unnormalizing:
Kl_Yl k'-Dk" -Ddo
S Y5 "B 5% "Bd_-Db
T o 1
and 2
v! v’ ' D (bldl - dobZ)
L oYL Z
(Bd_ - Db))

From equation (105b), at \ = 1:

. Z‘Krbp+}:‘ck=l'dk
or

KrB+C=D
Also:
d =K_Db
o r 1
d, =

176 T KD

Substituting equations (114) into (113):

' B

Kr=Kr(l+KrC-)

and c
R | B .2
YL—FI-(1+KrC)

From equation (103):

and

(112a)

(112b)

(112c)

(113)

(114a)

(114b)

(115)

(116)
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Thus :
1 .
K! =K (1+K_ Z)
and
2
v
YL = YL(l + Kr ZO) . (117)
Al_so:
Y' =Y (1 +K_Z)
[o] [o] r (o)

Since Kr and Zo' representing immittances, are inherently positive,
equation (117) indicates that by delaying stub extraction to the next stage one
necessarily increases the value of load conductance ultimately realized. Note that
all pertinent parameters can be determined at the Y(\) input stage. At a given
stage, any load conductance between the bounds YL and YL(l +KZ ) may be
realized by the proper specification of K

These relations may then be used in a stage-by-stage load adjustment
procedure, For any given synthesis, the minimum value of load admittance is
realized by immediate total residue extraction; the maximum value is obtained by
delaying stub extraction until last. The inability to predict the characteristic
impedance of the succeeding line, however, prevents the predictions of the overall
bounds on the load.

In the preceding derivation, use was made of the coefficients e e, Z'
and fl of equation (111). For the case where n > 3, these coefficients appear in
the form shown, and the prior general derivation applies. For the special case of
n=2 (i.e., one line and the shunt s.c. stub), f, does not appear, and additional
algebraic manipulation is required to obtain the desired forms.

Forn=2: 2

A" +dh+d)
Y (M) = 5 (118)
bA% + b\

for which:

3 2
Dbzk +(Dbl-de)X +(-Bdl)k+(-Bd°)

y'(\)= 3 y3 (119)
dex + (B dl - Dbz) A"+ (B'.'lo - Dbl)x
In reduced form:
-, elx + L
y'(\) = —— (120)

1
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Multiplying numerator and denominator of (120) by (1 - xz) and auociatihg

coefficients:
e°=-Bd°=-(Dbl-de) fl=(Bd°-Dbl) =-Bc1Z
(121)
el=-Bd1=-Db2 Bdl-Dbz=0
Thus: -Bd
k' =ﬁ——ﬁ-r as before.
T -
o 1
However:
Y' ) e, ) elf1 ) 'Bdl(Bdo - Dbl)
L™, "2 Z
fl fl (Bdo - Dbl)
or - (122)
v . . 'D(Bdldo - Dbldl)
L BYL

-
(Bd_ - Db))

From equations (121), Bd1 = Dbz. Therefore:

2
_ D (bldl - dobz)
L=

Z
(Bclo - Dbl)

which is the desired form, that of equation (113),

An elementary example will now be presented to demonstrate the technique,

Let the network of Figure 20 be given.

| BPE— -
Y(A) —e 10 MHO 1 MHO $ 0.01 MHO
f-==_ 1
e TEE—

Figure 20 - Given Network

From Figure 20:

Y(n) = 2+ BN (123)
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We desire now to obtain a network which will have the same input admittance

but a2 1-mho termination, Consider:

1
YL

For the given example:

2
Y (1+K 2Z)

YL= 0.01 mho
Z =1 ohm

0

K =10 mho .

Subs tituting into (117) to determine the required Kr’ we find;

1=0.01 (1+Kr- 1)2.

or

K. =9.00

Since 0 < 9 < 10, the desired network is physically realizable.
(117), the parameters of the equivalent network may be predicted to be:

K, =K - K_ =1 mho
1 r

Y' =1.10 = 10 mho

o
K! = 9.10 = 90 mho
YL= (0.01)(100) = 1 mho .
In the actual synthesis:
Yiog=2400+r 224010049
PR TR0 TN
" for which:
' wtsy L 10,10 _
YO = Yr(l) = -l—.o-l-- 10 mho
Thus: .
]
i = e TN 010034 902 0100 -9
NYI0 - Y Y

- 0'10)‘+9=£-+0.10=

t
kr
Tt

(117)

(124)

From

(125)

(126)

(127)
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Unnormalizing:

Uyt ! = -.
Kr = Yo kr = (10)(9) =-90 mho

Y; = Y; y;, = (10)(0.10) = 1 mho

The resulting equivalent network is:

‘L
Y(A)—e | MHO 10 MHO 90 MHO ;: ) MHO

Figure 21 - Equivalent Network

This partial residue technique has been offered in conjunction with the
material of Section III-A since, if one is willing to tolerate the disadvantages of
the manipulation (i.e., non-canonic equalizers with unpredictable stub positioning),
it appears possible to greatly expedite certain filter designs by avoiding the necessity

of numerical integration,

Let us suppose that, in the broadband matching of a sﬁeciﬁed resistance to
a given generator, one desires substantial stopband attenuation, This requirement
will necessitate an equalizer comprised of an appreciable number of cascaded lines.
Hgnce, the equiripple specification of lslz IZ will involve high-order functions;

numerical integration of the Fano integrand will become correspondingly tedious,

Note, however, that the constraint of rapid stopband attenuation will cause
a considerable portion of the area of the plotted Fano integrand to fall within the

_passband. Thus, if we use the passband approximation of (96) and then approximate

the total integral by this value, we can obtain a reasonable lower bound on the value
of the total integral,

A lower bound on the integral yields, from (89), a lower bound on the load,
Therefore, let us determine a KZ such that the lower bound on the load equals the
specified load resistance. We can then be assured that, in the ensuing synthesis,

the load resistance obtained by immediate stub extraction will prove > the desired
load,
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Noting (117), however, the load resistance may thén be decreased by
partial residue manipulation, The appreciable number of lines, necessitated by
the desired rapid stopband attenuation, provides a considerable number of stages

for this manipulation,

There are two obvious lhortcomings to this proposed procedure, From
(89), the load is seen to vary as the square of the integral. Thus, the above-
mentioned bound on the load will be relatively low, Secondly, the inability to pre-
dict the ovgran bounds of the partial residue adjustment prevents an absolute
assurance of desired load realization. Thus, this procedure affords one no
. positive guarantee of success. Rather, it has been offered as a technique which,
when properly used, has a good probability of success and, in view of the work it

curtails, might therefore be of value,
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IV. TUNNEL DI ODE AMPLIFIER DESIGN

_ The small-signal network equivalent circuit of the tunnel diode is shown'in
Figure 22. This model, which is valid up to microwave frequencies, is composed
of lumped parameter elements. Thus any attempt to design a distributed parameter
ampl.ifier encounters an initial difficulty; the network description of such a trans-

mission line -lumped reactance mixture would involve transcendental relations,
Z(jw) = c T :

Figure 22 - Equivalent Circuit of a Tunnel Diode (neglecting junction
spreading resistance)

L

Y'Y Y\

|
P}

To avoid this difficulty, we shall adopt the distributed parameter approxima -

tion of the diode, developed by L.I, Smilen? This model is shown in Figure 23,

-1
Z, £
—
A ‘; A
. =

Figure 23 - Approximate Model for the Tunnel Diode (neglecting junction
spreading resistance)

Thus, the p-plane reactances of Figure 22 are approximated by \ -plane

~ reactances in Figure 23, This model is to approximate the diode behavior over a

frequency band. From Figures 22 and 23?

2
. -R .
z(Jw)=__z_.z.T+Jw(L_—Rz%_T) (128a)
-1+w R°C l1+w R°C
52
- > R™Y
. -R . f
el : ) (128b)
o T o 22,2 2nwf
1+R than 2—{; 1+ R than .

*
Equations (128) and (129) are taken directly from Smilen?



49

where fo represents the quarter-wave frequency.
The imposition of the following constraints:

a) Real Z(0) = Real Z(0)
At a given frequency fc(O < fc < fo):

N (129a)
b) Real Z(j fc) = Real Z(j fc)
) Imag Z(j f) =1lmag Z(j £)
necessitates that:
a) f{ = R
nf
b) Y, = C cot ﬂo_c (129b)
12 fc
C) Zl = ch.J cot -2—zo~

Using this approximation, we wish to design a tunnel diode reflection

amplifier. This type of configuration is shown in Figure 24:

| = |

A P
9 .
A ! % Z, ! —lr

' TRANSMISSION LINE I:—ol <

E R, | Y. | :
9 I EQUALIZER
() l (2)
[ s +—

L
| OvERALL (s] STRUCTURE

A A4 o

Fig'ure 24 - Tunnel Diode Reflection Amplifier, with Diode Approximated
by Transmission Line Model

As is shown in the diagram, the stubs may be incorporated with the equalizer
to form a composite structure with resistive termination. This procedure is that
developed by Smilen and Youla.lo In accord with their derivation, the overall scatter- -
ing matrix [s] will be normalized at port 1 to the parallel combination of R‘ and
RL and at port 2 to +R. Then, for port 2 terminated in -R as shown, the transducer
power gain becomes:

2

P

2 L 1 2
Glw) =§=zlin Zl.'l (130)

1+ —2
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where P power to the load

L
F, * maximum available power from the generator
linztp = RL
. KL + Kg

(The derivation of (130), which appears in reference 10, is presented in Appendix C.)

The composite [S] structure of Figure 24 is of the class treated in Section
11-B, that is, a cascade of lossless equilength transmission lines augmented by a
stub configuration producing a second order zero of transmission at the quarter-
wave frequency., (We constrain the stubs to be lossless and of length commensurate
with the lines), Thus, we may specify |312|2,, corresponding to the structure of
Figure 24, in equiripple fashion; to achieve appreciable stopband fall-off, let the

equalizer be prescribed as composed of four cascaded lines. Then:

2 . 2 :
2 1 - } »
|8y,1% = 2 bz — = - (131)
1 +e¢“cos”(4¢+2p) 2 2

1+fz—+fz-cos(s¢+ 26)

where x = cos ¢ = a sin 0.

The Islzlz so defined pertains to the network wherein the diode approximate
model is used; we anticipate no substantial change in behavior over the frequency
band of interest when we revert back to lumped reactances. Thus, by so specifying
|llz|2, we approximate the transducer power gain as an equiripple shape., This can

be seen by noting that for the lossless reciprocal structure:

2 2 2
o)y 17 =1 - 183,17 = [855] (132a)

"and in the passband (i.e., region of high gain), |.'—1- | >> 1 so that:
11

2 2
Glu?) x oz 2e |1 (132b)
11

- Having the form of Illz|2, we must now prescribe the constants a, bZ, and
¢ . The first of these, a, is fixed by the desired bandwidth and certain practical
considerations. If, as an illustration, we seek amplification over a frequency band
extending from d.c. to 1 kmc, then atf = fl = 109 cps, x = 1, Moreover, suppose
further, we do not wish the transmission lines which will constitute the equalizer,

to be of length less than one inch. These constraints essentially fix the upper
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bound of ¢ at 2,00, For a = 2.00:

l=2:inBl and Z=Zsine°
or
_m _m
91--3 and 90-2-

(where the subscript 1 denotes passband edge parameters and the subscript o denotes

1 -wave frequency parameters) .

4
Consequently: 2w f !
-— = l - r
=Pt =——=%
2w fol "
eo = pol = v = 2' .

orf =3f =3kmc, and since v =3 x 1010 cm/sec., £ =2,.50 cm.

Another factor influencing the choice of a arises from the approximate
model being used for the diode. This model is to approximate the diode behavior’
over a frequency band. As is indicated in reference 9, thi.a approximation is
enhanced by decreasing the ratio fc/fo, which for our design will become fl/fo
(i.e., we set fc = fl = 109 cps); hence, the approximation is bettered by increasing a.

A compromise must therefore be made to accommodate these considerations,
A reasonable value, and that which will be adopted, is a = 2. 00, '

The parameters b2 and :Z must be selected in such a manner as to make
the diode approximate model applicable. We are designing a network which will
initially be realized in the form of Figure 24; then, using equations (129b) in inverted
form, we will substitute the diode lumped reactances for the stubs. If this procedure
is to be successful, the value of the stub immittances which result in the synthesis,
must transform into lumped reactances having values consistent with those encountered
in tunnel diodes. Essentially, then, we must be able to prescribe proper values for
the stub characteristic immittances. These values must be transformable to
tunnel diode-type lumped reactances; the resultant amplifier must in turn realise a
reasonable transducer power gain. '

The second order zero of transmission at the quarter-wave frequency,
created by the stub configuration, provides the means by which the stub characteristic
immittances may be predicted. Two integral reltrictionl“ pertain, We shall
constrain lzz(k) to have no zeros in Re(\) > 0 such that these restrictions become )
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equalities, Then, from Figure 23 with Eg = 0 and -R disconnected:

j'm in ety d2 = %}'_
o szz(jﬂ)l 2
and ' . ' (133)
2
. -z
fmszz 1;1*-——-1--—2 as =-33-’-' ?—EE,}—TL- :
o * szz(js‘l)l Z,Y;R

One notes from equations (131) and (132a) that the parameters b2 and cz

influence the integrands of equations (133) and therefore influence the values of the
stub immittances,. (bZ > 0is prescribed to prevent both gain oscillations and

j-axis logarithmic singularities of the integrands.)

Using the relations of (133), suitable s.tub immittances may be determined
through a trial and error procedure. A reasonable gain and tolerance is initially
chosen (essentially by guesswork guided by experience)., Then, using equations
(131) and (132a) in conjunction with (132b), the constants b2 and sz are evaluated.
Equation (131) is thereby completely specified. (Note that, in view of the approximat-
ed gain and the approximate diode model, the specified tolerance should be less than
the desired.)

The integral relations may then be numerically evaluated and the correspond-
ing stub immittances determined. If the associated lumped elements prove of the
magnitude encountered in tunnel diodes, one may proceed with the synthesis; if not,

one must select another gain-tolerance combination and repeat the procedure,

The angle § in equation (132b) may be arbitrarily prescribed beforehand;
any subsequent alteration required to accommodate a particular load or generator

impedance will alter only the gain level and not the integral relations,

For the design in question, with § = 45°, a suitable specification proved to
be a gain of 19.0 db + 1.0 db, over the desired 1 kmc band. From equation (132b):

; 1
G = 100.00 =
max 4b2

and
. _ 2l 1+ 52
G, = 63.0957 = 7 ( TT)
+ ¢
or (134)
b = 0,002500
2

0.001463

[
H
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Substituting these values into equition (131) and applying (132a), we obtain:

2 0.003234 + 0.000734 cos(8
8221 ‘rmmum—(‘rf*n)z—. 70, : 3 :26 (135a)

whetre, for a = 2,00

cos(8¢+285) = (-'z!-]','z [(mxs-zsex"; 160x% - 32x% + 1)(97x* . 1042+ 16) 4
X - s
(1350)

+13.85641 (Tx% - 4)(128x29-320x8+ 272x° - 88 x*+ sz)]

The integral relations were then evaluated in the x-domain, Since x =q sin 9,

nz = tanze = x2 Equations (133) thus become:
: a” - x
o -3 '
2 2 1 2w
a (a” -x) In -——z-dx=
{ ls,, | RY,
22
and ; . (136)
2 2,2 .2°2 1 2a|3RY,-2
a x“{a" -x") ln---.-—z = s
’£ 'zzl 3 ZleR

Figures25 and 26 show the plots of the respective integrands. The dashed
curve in Figure 25 indicates the behavior of the integrand wherein the passband
behavior of |'22| is approximated by its mean value (i.e., -g—g-g%%-}-), " As the
graph indicates, this approximation is quite good; in using it, one can avoid a
considerable amount of calculation.

For R = 30 ohm, the stub immittances were subsequently evaluated as:

Y, = 0,05477

2
- (137a)
= 69,8011

Using equations (129b) (for f e = 109 cps), the corresponding lumped elements were
determined to be:
€ =5,035 pf

13
L =6.417 nh ( )
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The resistance and capacitance thus determined have magnitudes typical
of tunnel diodes; the inductance, however, is somewhat high. Thus, it will prove
necessary to add series inductance. This is not too stringent a condition, since

in ordinary tunnel diodes the inductance depends on the lengths of the leads.

Since the reactances prove acceptable, we may proceed with the synthesis,
From 'equation (135):

|s,,1% = 18.226206 x'2 - 55.987201x' "+ 64. 820134x° - 34.829271x% +
+ 8.545831 x* - 0,8029056 x> +0,063488
18.226206x1% - 55, 987201 x.0 + 64, 820134x° - 34, 829271 x° +
+9.543331x%.8,7829056x% + 16. 023488

(138a)
2 40

Fora=2,00, x = - . Therefore:
Q7+1

lszz(jﬂ)lz = 3182212845762 30298. 94924800 + 10695, 97014408
- 1712.9866240%+ 121, 6275040% - 2. 83069449% + 0. 063488
31822, 128457601 2- 30298, 949248210 + 10711; 93014405

- 1649, 14662496+ 217, 38750494+ 61, 00930569z +16,023488

(138b)
Equation (138b) was factored by a computer, Selecting left-hand plane zeros of
lZZ(X) and noting the capacitive nature of port 2 at infinity (i.e., szz(oo) = -1), the
resultant form became:

5,,0\) = 28.0.407052)2% -0.5589130%-0.15758523 - 0, 07601212 - 0. 011215\
-0.001412

ZO41.6148960°+1.7800100%+1.2396712%+ 0.5860271%+0.167981\
+ 0,022439

(139)
Using equation (139), the network of Figure 27 was synthesized,
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2.20751 OHM

P i — el

L1343 MHO 0.805 2360 0.4158  3.269 | cootly 3 oo

& MHO ~  MHO  MHO MHO ———— H

- - S - >

L 1250¢cm

Figure 27 - Synthesized 4-Line Amplifier with Transmission Line
Diode Model .

If the impedance level of Figure 27 is raised to R = 30 ohm, the stub
immittances will become:

_ 1.65585

2 —-—3-r-—~ = 0.055195 mho

Y

Z1 = (2,20751)(30) = 66,2253 ohm
From (129b):

C
L

5.074 pf.
6, 088 nh,

Substituting these lumped elements for the stubs, the resultant amplifier

becomes that shown in Figure 28:

6.088 nh.
$2.90 OHMS .
352,90 37.267  12.712 72.1%0 9.177 L
€ FOHM  OHM OHM OHM OHM 8.074 pt. 2 't“” OHM
9 — ot - .o
2 22.50¢m

Figure 28 -~ 4-Line Tunnel Diode Reflection Amplifier

The transducer power gain of the amplifier as a function of frequency is
now to be determined, To accomplish this, we must initially consider the network
of Figure 28 with port 2 terminated in a +R (i.e., +30 ohm) resistance. This

artifice arises from a somewhat subtle but highly important point,

The derivation of the transducer power gain, G(uz), as shown in Appendix C,
is done for port normalizations of R_and +R, with the respective terminations being
ig and -R, Thus, one might question the above change in the port 2 termination.
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Note from equation (130), however, that determining G(uz_) necessitates the ascertain-
ing of s“(j w). This scattering coefficient is one of four which, for specified port
normalizations, characterizes the two-port composed of the transmission line

cascade in tandem with the reactive L -section. That is, although the derivation of
G(uz)'depends upon specific port normalizations and terminations, the scattering

coefficient s“(j w) itself is independent of terminations,

One observes from Figure 28 that a parameter which can be determined with
relative ease is a port 1 input scattering coefficient, normalized to R_. Evaluating

this term involves essentially Smith Chart techniques. We wish now to relate this

- input coefficient to sn(j w). As reference 2 points out, the port 1 input coefficient

equals s“(j w) if port 2 is terminated in its match (i.e., +R), upon which a, equals
zero, If port 2 is terminated in -R, b, becomes equal to zero and no simple

relation exists between sinl(j w) and s”(j w).

Thus we use the +R port 2 termination as a means of readily evaluating
s“(j w), This parameter, for the same normalization, does not change when we
subsequently revert to the -R termination, For this latter configuration, the

transducer gain given by equation (130) applies,

Figure 29 shows the variation of G(wz) with frequency for the amplifier of
Figure 28, This response was evaluated by an entirely numerical procedure for

reasons of accuracy; the Smith Chart was not used.

Throughout the course of this synthesis procedure, two approximations
were made; the diode was approximated by the transmission line model and the gain
relation was approximated by equation (132b). Thus, as Figure 29 indicates, the
exact gain expression, when evaluated for the network of Figure 28, deviated some-
what from the specified 19,0 t 1.0 db. By sacrificing some gain for better toler-

"ance in the initial specification, it is felt that one may achieve ultimately an even

better response.

In the design, R was arbitrarily set equal to 30 ohms, since -R = -30 ohms
is a value typical of turnel diodes, Note that, once Islzliand‘f{ are numerically
specified, the transparency of the system at d.c. fixes R _ . R , in turn, involves
Rg' RL and the angle . This angle may be subsequently varied, at the expense of
L °F Rg' If the
design in question demands both a particular RL and Rg' both R and § are thereby
fixed for a given ]slzlz.

gain, to accommodate, within certain limits, a particular R
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The major shortcoming of the design procedure is its inability to guarantee
a stable amplifier. Smilen and Youla'® show that any diode for which L/R%C < 3
can be used to design a stable amplifier. Reference 10 further derives the necessary
conditions for the stability of a reflection amplifier; lzz(p) can have no zeros in
Re(p) > 0 and s“(p) can have no zeros in Re(p) < 0.

The only condition which we satisfy with certainty is the inequality, From
equations (131) and (132a), one notes that 0 < lczz(jﬂ)lz < 1. ‘Hence the integrand
of equation (133) is non-negative, or Zl/RZYz > 3. From equations (1é9b).
however, Zl/\'Z = L/C,

The inability to predict or control the critical frequencies of the scattering
coefficients stems basically from the transcendental functions inherent in network
descriptions of transmission line-lumped reactance mixtures, The scattering
coefficients, over which we have explicit ‘contrél, are those characterizing the
system of Figure 24. The s,, coefficient of this system was selected without zeros
in Re(\) > 0. - The substitution of the lumped reactances for the stubs essentially
creates a new lossless reciprocal two-port, characterized by its own scattering

coefficients, Over these latter parameters, we have no explicit control,
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APPENDIX I: Synthesis Example of a Type II-C Network (i.e,, same order zeros
of transmission at d,c, and the quarter-wave frequency)

The most elemental network of this class, a two-line cascade augmented by
a stub configuration realizing single order zeros, is to be synthesized, As
representative bandwidth and tolerance parameters, we select:

a=2,00

‘2 = 0,01

Then, from equation (63) (withn=2m =2 and r = 1):

2 - 0‘ 99
18021 = v or T (A-1)
Therefore: ,
2 2_-0.27856x%+ 0,29856x% -0,0800 '
log 1" = 1-10),1%= 'y 2 (A-2)
-0.27856x% + 1.28856 x° - 4. 0400 _
2 o211 -gdy2
x=qacos26, Thus, x =°—(——2-%-— where Q = tan 6
(1 + a%)
Substituting into equation (A-2):

' 8 6 4 2
2_-3,342720%+17.507840% - 29, 610240%+ 17. 507840% - 3. 34272
lsy, 4 |® = 7, 3 T — (A-3)
-3.3427209%+ 1. 667840°% - 61.290240%+ 1, 667840% - 3. 34272

for which:
4 2
Ly, - 24 2.618750% 4+ 1 (Aet)

243.506307+6.39720°+3.5063 + 1

Note that by selecting s,,(0) = l“(oo) = +1, we shall realize the zeros of
transmission through series, rather than shunt, stubs,

The corresponding port 1 input impedance is:
. 22*4+3.50630%49.01600% 43,5063 + 2
Z0 = 3 —7

3.5063\" + 3,7784\"+3,5063)\

The network of Figure A-1 resulted,

(A-5)



63

‘ 0.570 _  0.570
b oM OMM OHM 0.718 0.718
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™ e

[
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L

0.385 OHM

Figure A-]1 - Network Realizing Equiripple Response with Zéros of
Transmission at D, C. and the Quarter -Wave Frequency

APPENDIX lI: Factorization for the Special Case wherein the Order of the Zero

of Transmission is Equal to the Number of Cascaded Lines

For this case:
1 - (e + k%)
1+ cz cos(2né + nj)

ls),12 =

cos(2nd+nd)+ 1 + kz/t:Z
cos(2né + nbd) + l/cz

2 2
), 1% =1 - 18),1% =

1. Numerator Equation

kZ
cos(Zné + nd) = -(1 +—-2-)
€
Let
2né+ndz= p+jn
Then:
k2
cos p coshn - j sinp sinhn = -(1 +—2-)
€
or:
sinp sinhn =0
kZ
cosp coshn = -(1 +—2-)
€
Therefore:
p=t(2m+l)w m=0;1020 °
1, . K

(B-1)

(B-2)
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From equation {(B-2), then:

: 2
. - k
2np+ns=t@m+l)r tjcosh (1 +5)
€
or
+ vt 1 -1 K2
Z¢+6=-(Zm+1);-j; cosh (l+—2-)
€
Thus:
: T+ .1 -1 kz " '
cos{2 ¢ + §) = cos (2m+l);-j;cosh (“'_'Z') (B-3)
£
Let these values be represented by §m.
2. Denominator Equation
By an identical procedure:
cos2o+8) =t _=cos g+ NEtjLlcosn ! () (B-4)
“q n ~’n :2

q:O' l. 2’ "0

3, cos(2¢+b8)=cos2¢dcosb -sin2¢ sin b =

[sz-l] [(Zaz-l)xz-az] - [Zx/::z] 20 x /1 -xz)(-uz-l)]i
Therefore, from equations (B-3) and (B-4):

x*(4a%+4a Ja?-1 - 2) - P40+ 4a /nz-l -1-¢)+a2(1-£)=0 (B-5)

where the proper £ -set must be used,

1

(a -x7)

2
4, For zeros of transmission atd,c,, x = a cos 0, or x2 = —3——-2— .
{1+a"%)

Therefore:

VQ4(1-§)+QZ(3-§ -4(12-4& ’uz-l)+ (Z+4o4+403/o.7-1-4n/n2-1-6n2)=0

{B-6)
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Therefore:

N7 (da®odg daZol 4 & -3)t {(3-6 ~daP-ta ool )2 - 4016 ) (2+4a + o fa2ul - dadaZol - 62)
- T e(l -g)

(B-7)

By substituting the gm and gq sets into the above relation, one can obtaip

the numerator and denominator roots for s“(k ). The condition, s (0) =1 1,
the sign depending upon the type of network desired, determines the requlred scale

factor for the factored s“(K ).
5. For zeros of transmission at the quarter-wave frequency, x = a 8in 6, or
x%=a%a% a% 41,

Therefore, substituting into equation (B-5):

242+ 4%+ 403 a1 - 4afa®-1 - 6a®) +22(3-£ -4a%-4a JaZ-1) + (1-§) = O (5-8)

The roots are consequently:

+; [(4a®+dagp®-1 4 -3) £ (36 ~ta? - tade?o1 12 - 42440 1403 -1 - o1 - 6a)(1-¢)
22+40%+ 403021 - dafa’-1 - 6ad)

Smce quarter -wave frequency zeros of transmission demand that

A=

(B-9)

1(c:o) = - 1 the scale factor for this case will involve, at molt, a change in sign,

APPENDIX III: Derivation of Reflection Amplifier Transducer Power Gain*

Figure C-1 shows the reflection amplifier, with the input circuit represented

by its Thevenin equivalent circuit deduced from Figure 24,

A I| I!
g —— -—
A LOSSLESS RECIPROCAL
Eq v, (2 'v, $-R
TWO - PORT

Figure C-1 - Reflection Amplifier Representation, With the Input Circuit
Replaced by its Thevenin Equivalent

10

*This derivation is taken from Smilen and Youla,



Ao L z

R = = R _sin : C-1

- RL 2

E =E = E_ sin C-2
LR L R (c-2)

whe're'RL = Rg 1:a.nz ¢. The port normalization numbers are selected as:
Rl = Rg (C-3)
R, =R (C~4)

In terms of terminal voltages and currents, the incident and reflected

ﬁvoluges" are given as:

_— 1
14,77 3
a =7 LRi Vit R Ii]
G=1,2) (C-5)
r_zl_ l
1 3
b =3 |Ry" V; - R, Ii]
L

where the R, are the normalizing numbers.

From Figure C-1:

Vl=Eg-IlR8

VZ=IZR

. Therefore, for the given normalizations, from equations (C-5):

E .
a = z_f{l(ﬁ' (C-6)
and :
. o PR 0 (c-7
From (C-1) and (C-2):
E siny

ay =t (C-8)
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The maximum available power from the generator is:

I, |° 2 2
Pm=TR‘g_=|a1| csc
The power to the load is: l
Ak
P, =
L™ "Ry

which, from (C-5) in conjunction with (C-1) and (C-2), becomes:

2 2
PL= |a1+bl| cos ¢

Noting equation (C-7), the equations characterizing the network become:

by=8,,3,+8,,2,
0=8,8, 48,2,
Thus, ) 2
_*11%2 %12
bl - s bl
22

As a consequence of the unitary condition, the following relations apply:

#
o

$,1(=P) 8, (P) + 8,,(~p) 8,,(p) =

1

l“(P) 'l'l(‘P) + lu(P) '12(‘9)

(C-9)

(C-10)

(C-11)

(C-12)

(C-13)

(C-14)

(C-19)

By multiplying (C-14) by the factor [l“(p) 'xz“’)] and then using (C-15), one can

show that: :
.ll(p, .zz(P) - 'fz(P) - 1
.zz(PT L 1 II'PT

Therefore:

(C-16)



2
\ cos? y |“1|2 : (C-17)

and
(C-18)
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